
Recursion

The recursive function is

– a kind of function that calls itself, or

– a function that is part of a cycle in the sequence of function calls.

Let’s we want to find the factorial of a number: f(n) = n! We know that

n! = 1 * 2 * 3 * … * (n – 1) * n

For example, f(5) = 1 * 2 * 3 * 4 * 5. We also know that f(4) = 1 * 2 * 3 * 4. So

f(5) = (1 * 2 * 3 * 4) * 5 = f(4) * 5

The problem of calculating f(5) is reduced to the problem of calculating f(4): in

order to find f(5) we first must find f(4) and then multiply the result by 5. This process

can be continues like

f(5) = f(4) * 5 = f(3) * 4 * 5 = f(2) * 3 * 4 * 5 = …

How long shall we continue this process? We know that 0! = 1, but there is no

sense for calculating factorial for negative numbers. The equality 0! = 1 or f(0) = 1 is

called simple case or terminating case or base case. When we need to find f(0), we do

not continue the reduction like f(0) = f(-1) * 0 because it has no sense, but simply

substitute the value of f(0) by 1. So

f(2) = f(1) * 2 = f(0) * 1 * 2 = 1 * 1 * 2 = 2

A recursive function consists of two types of cases:

 a base case(s)

 a recursive case

The base case is a small problem

 the solution to this problem should not be recursive, so that the function is

guaranteed to terminate

 there can be more than one base case

The recursive case defines the problem in terms of a smaller problem of the same

type

 the recursive case includes a recursive function call

 there can be more than one recursive case

From the definition of factorial we can conclude that

n! = (1 * 2 * 3 * … * (n – 1)) * n = (n – 1)! * n

f1 f1 f2 fn …

If we denote f(n) = n! then f(n) = f(n – 1) * n. This is called recursive case. We

continue the recursive process till n = 0, when 0! = 1. So f(0) = 1. This is called the base

case.

f(3) = f(2) * 3

f(1) * 2

f(0) * 1

1

1*1*2*3 = 6

1)0(

*)1()(

f

nnfnf

base case

recursive case

E-OLYMP 1658. Factorial For the given number n find the factorial n!

► The problem can be solved with for loop, but we’ll consider the recursive

solution. To solve the problem, simply call a function fact(n). The value n ≤ 20, use

long long type.

long long fact(int n)

{

 if (n == 0) return 1;

 return fact(n-1) * n;

}

E-OLYMP 1603. The sum of digits Find the sum of digits of an integer.

► Input number n can be negative. In this case we must take the absolute value of

it (sum of digits for -n and n is the same).

Let sum(n) be the function that returns the sum of digits of n.

 If n < 10, the sum of digits equals to the number itself: sum(n) = n;

 Otherwise we add the last digit of n to sum(n / 10);

We have the following recurrence relation:

sum(n) =

10,

10,10%)10/(

nn

nnnsum

sum(123) = sum(12) + 3 = sum(1) + 2 + 3 = 1 + 2 + 3 = 6

E-OLYMP 2. Digits Find the number of digits in a nonnegative integer n.

► Let digits(n) be the function that returns the number of digits of n. Note that

sum of digits for n = 0 equals to 1.

 If n < 10, the number of digits equals to 1: digits(n) = 1;

 Otherwise we add 1 to digits(n / 10);

We have the following recurrence relation:

digits(n) =

10,1

10,1)10/(

n

nndigits

https://www.e-olymp.com/en/problems/1658
https://www.e-olymp.com/en/problems/1603
https://www.e-olymp.com/en/problems/2

Example: digits(246) = digits(24) + 1 = digits(2) + 1 + 1 = 1 + 1 + 1 = 3.

E-OLYMP 3258. Fibonacci Sequence The Fibonacci sequence is defined as

follows:

a0 = 0

a1 = 1

ak = ak-1 + ak-2

For a given value of n find the n-th element of Fibonacci sequence.

► In the problem you must find the n-th Fibonacci number. For n ≤ 40 the

recursive implementation will pass time limit. The Fibonacci sequence has the

following form:

0

0

1

1

1

2

2

3

3

4

5

5

fi

i

8

6

13

7

21

8

34

9

55

10

...

...

The biggest Fibonacci number that fits into int type is

f46 = 1836311903

For n ≤ 40 its enough to use type int.

Let fib(n) be the function that returns the n-th Fibonacci number. We have the

following recurrence relation:

fib(n) =

0,0

1,1

1),2()1(

n

n

nnfibnfib

int fib(int n)

{

 if (n == 0) return 0;

 if (n == 1) return 1;

 return fib(n-1) + fib(n - 2);

}

E-OLYMP 3260. How many? Find the number of ways to take k cribs out of n.

► To find the value of binomial coefficient k
nC we can use following recurrence

relation:

k
nC =

0 ,1

 ,1

0,1
1
1

k

nk

nCC k
n

k
n

, where k
nC =

)!(!

!

knk

n

Proof. k
n

k
n CC 1

1
1

 =

)!()!1(

)!1(

knk

n

 +

)!1(!

)!1(

knk

n
 =

)!(!

)()!1(

knk

knkn

 =

)!(!

!

knk

n

int Cnk(int n, int k)

{

https://www.e-olymp.com/en/problems/3258
https://www.e-olymp.com/en/problems/3260

 if (n == k) return 1;

 if (k == 0) return 1;

 return Cnk(n - 1, k - 1) + Cnk(n - 1, k);

}

E-OLYMP 273. Modular exponentiation Three positive integers x, n and m are

given. Find the value of xn mod m.

► Exponentiation is a mathematical operation, written as xn, involving two

numbers, the base x and the exponent or power n. When n is a positive integer,

exponentiation corresponds to repeated multiplication of the base: that is, xn is the

product of multiplying n bases: xn = x * x * … * x.

How to find xn if x and n are given? We can use just one loop with complexity

O(n). Linear time algorithm will pass the time limit because n ≤ 107.

Use long long type to avoid overflow.

scanf("%lld %lld %lld", &x, &n, &m);

res = 1;

for (i = 1; i <= n; i++)

 res = (res * x) % m;

printf("%lld\n", res);

E-OLYMP 4439. Exponentiation Find the value of xn.

► How can we find xn faster then O(n)? For example,

x10 = (x5)2 = (x * x4)2 = (x * (x2) 2)2

We can notice that x2n = (x2)n, for example x100 = (x2)50.

For odd power we can use formula x2n+1 = x * x2n, for example x11 = x * x10.

The recurrent formula gives us the O(log2n) solution:

nx =

0,1

 ,

 ,

1

2/2

n

is oddnxx

is evennx

n

n

int f(int x, int n)

{

 if (n == 0) return 1;

 if (n % 2 == 0) return f(x * x, n / 2);

 return x * f(x, n - 1);

}

At the iterative implementation, the case x = 1 and n is a large integer should be

processed separately. For example, if x = 1 and n = 1018, in order to calculate xn, 1018

iterations should be performed and will give the Time Limit.

E-OLYMP 1601. GCD of two numbers Find the GCD (greatest common divisor)

of two nonnegative integers.

► The greatest common divisor (gcd) of two integers is the largest positive

integer that divides each of the integers. For example, gcd(8, 12) = 4.

It is also known that gcd(0, x) = |x| (absolute value of x) because |x| is the biggest

integer that divides 0 and x. For example, gcd(-6, 0) = 6, gcd(0, 5) = 5.

https://www.e-olymp.com/en/problems/273
https://www.e-olymp.com/en/problems/4439
https://www.e-olymp.com/en/problems/1601

To find gcd of two numbers, we can use iterative algorithm: subtract smaller

number from the bigger one. When one of the numbers becomes 0, the other equals to

gcd. For example, gcd(10, 24) = gcd(10, 14) = gcd(10, 4) = gcd(6, 4) = gcd(2, 4) =

gcd(2, 2) = gcd(2, 0) = 2.

If instead of “minus” operation we’ll use “mod” operation, calculations will go

faster.

a b

10 24

10 14

10 4

6 4

2 4

2 2

2 0

a b

2 9

2 7

2 5

2 3

2 1

1 1

1 0

9 mod 2 = 1

For example, to find GCD (1, 109) in the case of using subtraction, 109 operations

should be performed. When using the module operation, one action is sufficient.

GCD of two numbers can be found using the formula:

GCD (a, b) =

baaba

babba

ab

ba

),mod,GCD(

),,modGCD(

0,

0,

,

or the same

GCD(a, b) =

0),mod,GCD(

0,

bbab

ba

The loop implementation is based on the idea given in the last recurrence relation:
while (b > 0) :

compute a = a % b;

swap the variables a and b;

int gcd(int a, int b)

{

 if (a == 0) return b;

 if (b == 0) return a;

 if (a >= b) return gcd(a % b, b);

 return gcd(a, b % a);

}

or

int gcd(int a, int b)

{

 return (b) ? gcd(b,a % b) : a;

}

E-OLYMP 1602. LCM of two integers Find the LCM (least common multiple)

of two integers.

► The Least Common Multiple (LCM) of two integers a and b is the smallest

positive integer that is evenly divisible by both a and b. For example, LCM(2, 3) = 6

and LCM(6, 10) = 30.

To find the least common multiple, use the formula:

GCD (a, b) * LCM (a, b) = a * b

where from

LCM (a, b) = a * b / GCD (a, b)

Since a, b < 2 * 109, then when multiplying the value a * b can go beyond the type

int. When calculating, use the type long long.

Consider the numbers from the sample:

GCD (42, 24) * LCM (42, 24) = 42 * 24,

where from

LCM (42, 24) = 42 * 24 / GCD (42, 24) = 42 * 24 / 6 = 168

long long lcm(long long a, long long b)

{

 return a / gcd(a, b) * b;

}

What do the next functions do (calculate):

Quiz 1

int f(int n)

{

 if (n == 0) return 0;

 return f(n-1) + n;

}

Quiz 2

int f(int n)

{

 if (n == 0) return 0;

 return f(n-1) + 1;

}

Quiz 3

int f(int n)

{

 if (n == 0) return 1;

 return f(n-1) * 2;

}

Quiz 4

https://www.e-olymp.com/en/problems/1602

int f(int n)

{

 if (n == 0) return 0;

 return f(n-1) + 5;

}

What will be printed with the next code

Quiz 5

#include <stdio.h>

void f(int n)

{

 if (n == 0) return;

 printf("%d ",n);

 f(n-1);

}

int main(void)

{

 int n;

 scanf("%d",&n);

 f(n);

 return 0;

}

Quiz 6

#include <stdio.h>

void f(int n)

{

 if (n == 0) return;

 f(n-1);

 printf("%d ",n);

}

int main(void)

{

 int n;

 scanf("%d",&n);

 f(n);

 return 0;

}

Quiz 7

#include <stdio.h>

int f(int x, int y)

{

 if (x == 0) return y;

 return f(x-1,y) + 1;

}

int main(void)

{

 int a, b;

 scanf("%d %d",&a,&b);

 printf("%d\n",f(a,b));

 return 0;

}

