
Recursion 
 

The recursive function is 

– a kind of function that calls itself, or 

– a function that is part of a cycle in the sequence of function calls. 

 

 
 

Let’s we want to find the factorial of a number: f(n) = n! We know that 

n! = 1 * 2 * 3 * … * (n – 1) * n 

For example, f(5) = 1 * 2 * 3 * 4 * 5. We also know that f(4) = 1 * 2 * 3 * 4. So  

f(5) = (1 * 2 * 3 * 4) * 5 = f(4) * 5 

 

The problem of calculating f(5) is reduced to the problem of calculating f(4): in 

order to find f(5) we first must find f(4) and then multiply the result by 5. This process 

can be continues like  

f(5) = f(4) * 5 = f(3) * 4 * 5 = f(2) * 3 * 4 * 5 = … 

 

How long shall we continue this process? We know that 0! = 1, but there is no 

sense for calculating factorial for negative numbers. The equality 0! = 1 or f(0) = 1 is 

called simple case or terminating case or base case. When we need to find f(0), we do 

not continue the reduction like f(0) = f(-1) * 0 because it has no sense, but simply 

substitute the value of f(0) by 1. So  

f(2) = f(1) * 2 = f(0) * 1 * 2 = 1 * 1 * 2 = 2 

 

A recursive function consists of two types of cases: 

 a base case(s) 

 a recursive case 

 

The base case is a small problem  

 the solution to this problem should not be recursive, so that the function is 

guaranteed to terminate 

 there can be more than one base case 

 

The recursive case defines the problem in terms of a smaller problem of the same 

type 

 the recursive case includes a recursive function call 

 there can be more than one recursive case 

 

From the definition of factorial we can conclude that  

n! = (1 * 2 * 3 * … * (n – 1)) * n = (n – 1)! * n 

f1 f1 f2 fn … 



If we denote f(n) = n! then f(n) = f(n – 1) * n. This is called recursive case. We 

continue the recursive process till n = 0, when 0! = 1. So f(0) = 1. This is called the base 

case. 

f(3) = f(2) * 3

f(1) * 2

f(0) * 1

1

1*1*2*3 = 6

 









1)0(

*)1()(

f

nnfnf

base case

recursive case

 
 

E-OLYMP 1658. Factorial For the given number n find the factorial n! 

► The problem can be solved with for loop, but we’ll consider the recursive 

solution. To solve the problem, simply call a function fact(n). The value n ≤ 20, use 

long long type. 
 
long long fact(int n) 

{ 

  if (n == 0) return 1; 

  return fact(n-1) * n; 

} 

 

E-OLYMP 1603. The sum of digits Find the sum of digits of an integer. 

► Input number n can be negative. In this case we must take the absolute value of 

it (sum of digits for -n and n is the same). 

Let sum(n) be the function that returns the sum of digits of n.  

 If n < 10, the sum of digits equals to the number itself: sum(n) = n; 

 Otherwise we add the last digit of n to sum(n / 10); 

We have the following recurrence relation: 

sum(n) = 
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sum(123) = sum(12) + 3 = sum(1) + 2 + 3 = 1 + 2 + 3 = 6
 

 

E-OLYMP 2. Digits Find the number of digits in a nonnegative integer n. 

► Let digits(n) be the function that returns the number of digits of n. Note that 

sum of digits for n = 0 equals to 1. 

 If n < 10, the number of digits equals to 1: digits(n) = 1; 

 Otherwise we add 1 to digits(n / 10); 

We have the following recurrence relation: 

digits(n) = 
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Example: digits(246) = digits(24) + 1 = digits(2) + 1 + 1 = 1 + 1 + 1 = 3. 

 

E-OLYMP 3258. Fibonacci Sequence The Fibonacci sequence is defined as 

follows: 

a0 = 0 

a1 = 1 

ak = ak-1 + ak-2 

For a given value of n find the n-th element of Fibonacci sequence. 

► In the problem you must find the n-th Fibonacci number. For n ≤ 40 the 

recursive implementation will pass time limit. The Fibonacci sequence has the 

following form: 
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The biggest Fibonacci number that fits into int type is  

f46 = 1836311903 

For n ≤ 40 its enough to use type int. 

Let fib(n) be the function that returns the n-th Fibonacci number. We have the 

following recurrence relation: 

 

fib(n) = 














0,0

1,1

1),2()1(

n

n

nnfibnfib

 

int fib(int n) 

{ 

  if (n == 0) return 0; 

  if (n == 1) return 1; 

  return fib(n-1) + fib(n - 2); 

} 

 

E-OLYMP 3260. How many? Find the number of ways to take k cribs out of n. 

► To find the value of binomial coefficient k
nC  we can use following recurrence 

relation: 

k
nC  = 
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int Cnk(int n, int k) 

{ 

https://www.e-olymp.com/en/problems/3258
https://www.e-olymp.com/en/problems/3260


  if (n == k) return 1; 

  if (k == 0) return 1; 

  return Cnk(n - 1, k - 1) + Cnk(n - 1, k); 

} 

 

E-OLYMP 273. Modular exponentiation Three positive integers x, n and m are 

given. Find the value of xn mod m. 

► Exponentiation is a mathematical operation, written as xn, involving two 

numbers, the base x and the exponent or power n. When n is a positive integer, 

exponentiation corresponds to repeated multiplication of the base: that is, xn is the 

product of multiplying n bases: xn = x * x * … * x. 

How to find xn if x and n are given? We can use just one loop with complexity 

O(n). Linear time algorithm will pass the time limit because n ≤ 107. 

Use long long type to avoid overflow. 

 
scanf("%lld %lld %lld", &x, &n, &m); 

res = 1; 

for (i = 1; i <= n; i++) 

  res = (res * x) % m; 

printf("%lld\n", res); 

 

E-OLYMP 4439. Exponentiation Find the value of xn. 

► How can we find xn faster then O(n)? For example, 

x10 = (x5)2 = (x * x4)2 = (x * (x2) 2)2 

We can notice that x2n = (x2)n, for example x100 = (x2)50. 

For odd power we can use formula x2n+1 = x  * x2n, for example x11 = x  * x10. 

The recurrent formula gives us the O(log2n) solution: 

nx  = 
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int f(int x, int n) 

{ 

  if (n == 0) return 1; 

  if (n % 2 == 0) return f(x * x, n / 2); 

  return x * f(x, n - 1); 

} 

 

At the iterative implementation, the case x = 1 and n is a large integer should be 

processed separately. For example, if x = 1 and n = 1018, in order to calculate xn, 1018 

iterations should be performed and will give the Time Limit. 
 

E-OLYMP 1601. GCD of two numbers Find the GCD (greatest common divisor) 

of two nonnegative integers. 

► The greatest common divisor (gcd) of two integers is the largest positive 

integer that divides each of the integers. For example, gcd(8, 12) = 4. 

It is also known that gcd(0, x) = |x| (absolute value of x) because |x| is the biggest 

integer that divides 0 and x. For example, gcd(-6, 0) = 6, gcd(0, 5) = 5. 

https://www.e-olymp.com/en/problems/273
https://www.e-olymp.com/en/problems/4439
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To find gcd of two numbers, we can use iterative algorithm: subtract smaller 

number from the bigger one. When one of the numbers becomes 0, the other equals to 

gcd. For example, gcd(10, 24) = gcd(10, 14) = gcd(10, 4) = gcd(6, 4) = gcd(2, 4) = 

gcd(2, 2) = gcd(2, 0) = 2. 

If instead of “minus” operation we’ll use “mod” operation, calculations will go 

faster. 

a b

10 24

10 14

10 4

6 4

2 4

2 2

2 0

a b

2 9

2 7

2 5

2 3

2 1

1 1

1 0

9 mod 2 = 1

 
 

For example, to find GCD (1, 109) in the case of using subtraction, 109 operations 

should be performed. When using the module operation, one action is sufficient. 

 

GCD of two numbers can be found using the formula: 

GCD (a, b) = 
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GCD(a, b) = 
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The loop implementation is based on the idea given in the last recurrence relation: 
while (b > 0) : 

compute a = a % b; 

swap the variables a and b; 

 
int gcd(int a, int b) 

{ 

  if (a == 0) return b; 

  if (b == 0) return a; 

  if (a >= b) return gcd(a % b, b); 

  return gcd(a, b % a); 

} 

 

or 

 
int gcd(int a, int b) 

{ 

  return (b) ? gcd(b,a % b) : a; 

} 

 



E-OLYMP 1602. LCM of two integers Find the LCM (least common multiple) 

of two integers. 

► The Least Common Multiple (LCM) of two integers a and b is the smallest 

positive integer that is evenly divisible by both a and b. For example, LCM(2, 3) = 6 

and LCM(6, 10) = 30.  

To find the least common multiple, use the formula: 

GCD (a, b) * LCM (a, b) = a * b 

where from 

LCM (a, b) = a * b / GCD (a, b) 

Since a, b < 2 * 109, then when multiplying the value a * b can go beyond the type 

int. When calculating, use the type long long. 

 

Consider the numbers from the sample: 

GCD (42, 24) * LCM (42, 24) = 42 * 24, 

where from 

LCM (42, 24) = 42 * 24 / GCD (42, 24) = 42 * 24 / 6 = 168 

 
long long lcm(long long a, long long b) 

{ 

  return a / gcd(a, b) * b; 

} 

 

 

What do the next functions do (calculate): 

 

Quiz 1 
 
int f(int n) 

{ 

  if (n == 0) return 0; 

  return f(n-1) + n; 

}  

 

Quiz 2 
 
int f(int n) 

{ 

  if (n == 0) return 0; 

  return f(n-1) + 1; 

} 

 

Quiz 3 
 
int f(int n) 

{ 

  if (n == 0) return 1; 

  return f(n-1) * 2; 

} 

 

Quiz 4 
 

https://www.e-olymp.com/en/problems/1602


int f(int n) 

{ 

  if (n == 0) return 0; 

  return f(n-1) + 5; 

} 

 

What will be printed with the next code 

 

Quiz 5 
 
#include <stdio.h> 

 

void f(int n) 

{ 

  if (n == 0) return; 

  printf("%d ",n); 

  f(n-1); 

} 

 

int main(void) 

{ 

  int n; 

  scanf("%d",&n); 

  f(n); 

  return 0; 

} 

 

Quiz 6 
 
#include <stdio.h> 

 

void f(int n) 

{ 

  if (n == 0) return; 

  f(n-1); 

  printf("%d ",n); 

} 

 

int main(void) 

{ 

  int n; 

  scanf("%d",&n); 

  f(n); 

  return 0; 

} 

 

Quiz 7 
 
#include <stdio.h> 

 

int f(int x, int y) 

{ 

  if (x == 0) return y; 

  return f(x-1,y) + 1; 

} 

 



int main(void) 

{ 

  int a, b; 

  scanf("%d %d",&a,&b); 

  printf("%d\n",f(a,b)); 

  return 0; 

} 

 


